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Water leaks are a topic of great concern in Britain and many other countries, because of
decreasing water supplies and the deterioration of old pipework. Correlation techniques are
widely used in leak detection, but for these to be e!ective, the propagation wavespeeds and
wave attenuation must be known. Relatively predictable for metal pipes, these are largely
unknown for the newer plastic pipes, being highly dependent on the pipe wall properties and
the surrounding medium. In this paper, pipe equations for n"0 axisymmetric wave motion
are derived for a #uid-"lled pipe, surrounded by an in"nite elastic medium which can
support both longitudinal and shear waves. These equations are solved for two wave types,
s"1, 2, which correspond to a #uid dominated wave and an axial shell wave, and
expressions for a complex wavenumber for each wave are given.
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1. INTRODUCTION

Water leakage from buried pipes is a subject of great concern in Britain, and across the
world because of decreasing water supplies due to changing rainfall patterns, deterioration
or damage to the distribution system, and an ever increasing population. A signi"cant
amount of water can be lost due to leakage, and over the past few years much attention has
been focused on trying to reduce this wastage of resources.

For many years, the most useful technique for locating a leak has been the correlation of
leak noise at two locations along the pipe [1]. The leak position is identi"ed by the delay
between the leak noise reaching each monitoring point. Although the current acoustic
technique enjoys some success when employed on metal pipework, there are signi"cant
problems in locating leaks when the pipework is plastic, the technique in this situation not
being well established [2]. For the correlation technique to be e!ective, the propagation
wavespeeds and wave attenuation must be known a priori. Relatively predictable for metal
pipes, there is considerably more uncertainty with plastic pipes, as the wave propagation
behaviour becomes highly coupled between the pipe wall and the contained #uid and
surrounding medium [3, 4]. Consequently, the wavespeeds and losses in water pipes are
highly dependent on the pipe wall properties and the surrounding medium.

The problem of vibration and wave propagation within elastic, #uid-"lled pipes has
been studied previously in some detail, see for example references [5}7], and physical
interpretations of the results have been o!ered. Similarly, the radiation from submerged,
empty cylinders has been well documented, see for example references [4, 8]. However,
when the pipe both contains #uid and is surrounded by some medium, little work is
available in the literature, although some work primarily aimed at high frequencies has
recently been carried out [9, 10].
22-460X/02/050939#16 $35.00/0 ( 2002 Academic Press



Figure 1. The co-ordinate system for a #uid-"lled pipe surrounded by an in"nite elastic medium.
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Observing common practice within the leak detection community reveals that leak
detection is most successfully executed on low-frequency signals, suggesting that
these frequencies are both excited by the leak and propagate most e!ectively. In addition,
recent work in Canada on a plastic distribution system [2] has con"rmed that most
leak noise energy, on simulated but realistic leaks, is concentrated at frequencies below
100 Hz.

The focus of this work, therefore is on the low-frequency behaviour of #uid-"lled pipes
surrounded by another elastic medium. Well below the pipe ring frequency, four wave types
are responsible for most of the energy transfer [5, 6]: three axisymmetric waves (n"0)
and the n"1 wave, related to beam bending. Of the n"0 waves, the "rst, termed s"1,
is a predominantly #uid-borne wave; the second wave, s"2, is predominantly
a compressional wave in the shell; the third wave, s"0, is a torsional wave uncoupled from
the #uid. This work develops on previous work [5], in which wavenumbers were derived for
the s"1 and 2 axisymmetric wave types for a #uid-"lled elastic pipe in vacuo; the work is
extended here to consider the case of a buried pipe. Expressions for the wavenumbers are
derived, and the e!ects of the surrounding medium are investigated.

2. THE EQUATIONS OF MOTION

The pipe equations for n"0 axisymmetric wave motion are derived for a #uid-"lled pipe,
surrounded by an in"nite elastic medium which can sustain both longitudinal and shear
waves. These equations are solved for two wave types, s"1, 2, which correspond to a #uid
dominated wave and an axial shell dominated wave. Both of these wave types involve
motion of the shell and the #uid. Solutions are expressed in terms of a complex wavenumber
for each wave, the real part of which gives the wavespeed, and the imaginary part of which
gives the wave attenuation.

With reference to Figure 1, the shell displacements are u, v and w in the axial (x),
circumferential (h), and radial (r) directions respectively. The following are simpli"ed forms
of Kennard's equations for a thin-walled shell [11], with shell bending neglected, and so are
only valid below the ring frequency.

Equilibrium of forces in the axial direction gives

ouK"Lp
x
/Lx. (1)
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Equilibrium of forces in the radial direction, upon assuming no circumferential variation,
leads to

(p
f
(a)!p

m
(a))(a/h)"ph#oawK , (2)

(note that the pressures are evaluated at r"a), where p
x

and ph are the axial and
circumferential stresses, respectively, p

f
and p

m
are the pressures in the internal and external

media, respectively; o is the density of the shell material; and a and h are the radius and
thickness of the shell wall respectively (h@a). Hooke's Law relationships for the shell are
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E and l are the shell material Young's modulus and the Poisson ratio, respectively; w/a and
Lu/Lx are the circumferential and axial strains respectively.

Equations (1) and (4) may be combined to give
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Equations (2) and (3) yield
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These are the two coupled shell equations for n"0 motion.
Travelling wave solutions of the form

u"
2
+
s/1

;
s
ei(ut!k

s
x), w"

2
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s/1

=
s
ei(ut!k

s
x) (7, 8)

may be used to describe the displacements, where u is the angular frequency and k
s
is the

axial wavenumber for the s wave.
Upon assuming that the internal medium is a #uid, which cannot sustain shear, the

internal pressure p
f

can be described by a Bessel function of order zero,

p
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where the internal radial wavenumber, kr
fs

, is related to the #uid wavenumber, k
f
, by

(kr
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f
!k2

s
. (10)

The pressure in the external medium, p
m
, can be described by the sum of two Hankel

functions of order zero,s one corresponding to an outgoing longitudinal wave, and one
corresponding to an outgoing shear wave. No incoming waves are present as the medium is
considered to be of in"nite extent,

p
m
"

2
+
s/1

P
ds

H
0
(kr

ds
r)ei(ut!k

s
x)
#

2
+
s/1

P
rs
H

0
(kr

rs
r)ei(ut!k

s
x), (11)
sUpon adopting the e*ux time dependence convention, the Hankel functions which describe outgoing waves are
Hankel functions of the second kind.
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where the subscripts d and r refer to the longitudinal (dilatational) and shear (rotational)
wave types respectively. The radial components of the longitudinal and shear wavenumbers
are given by

(kr
ds
)2"k2

d
!k2

s
, (kr

rs
)2"k2

r
!k2

s
. (12, 13)

k
d
and k

r
are the longitudinal and shear wavenumbers, respectively, in the external medium.

Substitution of these pressure and displacement solutions into equations (5) and (6) gives the
following relationships for the s wavenumbers:
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where k
L

is the wavenumber of a compressional wave in a plate, given by k2
L
"u2 o(1!l2)/E.

Each of the pressure waves, s"1, 2, must have a radial displacement at the boundary
r"a which is equal to the shell displacement. Equating the radial velocity of the #uid at the
shell wall (both internally and externally) to the radial velocity of the shell wall gives
independent expressions for the pressure coe$cients P

fs
, P

ds
and P

rs
:
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where o
f

and o
m

are the internal and external medium densities, respectively, and the prime
denotes di!erentiation with respect to the argument.

Substituting equations (14) and (16)}(18) into equation (15) gives

1!k2
L
a2#l2

k2
s

k2
L
!k2

s

"

B
f
a (1!l2)

Eh

k2
f
a2

kr
fs

a

J
0
(kr

fs
a)

J@
0
(kr

fs
a)
!

B
m
a(1!l2)

Eh

k2
d
a2

kr
ds

a

H
0
(kr

ds
a)

H@
0
(kr

ds
a)

!

G
m
a(1!l2)
Eh

k2
r
a2

kr
rs
a

H
0
(kr

rs
a)

H@
0
(kr

rs
a)

. (19)

B
f
and B

m
are the bulk moduli of the internal and external media, respectively, and G

m
is the

shear modulus of external medium.
Equation (19) may be re-expressed in terms of the impedances of the longitudinal and

shear waves in the external medium, z
ds

and z
rs
. In addition, for small arguments, when there

is less than one half of a #uid wavelength across the pipe diameter, the small argument
approximations for the Bessel functions may be used [12]. Equation (19) then becomes
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where
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c
d
and c

r
are the wavespeeds of the longitudinal and shear waves respectively.
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2.1. WAVE IMPEDANCES IN THE SURROUNDING MEDIUM

Equation (21) gives the form of the impedances for the outgoing waves in the surrounding
medium. Each impedance is a function of both the wavenumber in the external medium,
and the radial component of that wavenumber: i.e., the impedance is a function of both
frequency and wave angle.

When the argument of the Hankel functions (the radial wavenumber) has a non-zero real
component (i.e., is either purely real or is complex), the Hankel function ratios are complex,
resulting in a radiation impedance which has both real and imaginary components; when
the radial wavenumber is purely imaginary, the Hankel function ratios are purely real,
resulting in a radiation impedance which is purely imaginary: i.e., purely reactive.

Equations (12) and (13) show that, for real k
d
, k

r
and k

s
, the radial wavenumber is real, and

thus the resulting impedance complex, provided that the respective wavenumbers of the
waves in the surrounding medium are greater than the wavenumber of the s wave in
the pipe: i.e., when the wavespeed of the s wave in the pipe is greater than the wavespeed of
the respective wave in the surrounding medium. When the wavespeed of the s wave in the
pipe is less than the wavespeed of a wave in the surrounding medium, the resulting wave
impedance is purely imaginary. When the wavenumbers k

d
, k

r
and k

s
are complex, such as

when the s wave decays as it propagates or when the contained medium or pipe wall
material are allowed to be lossy, the wave impedances are always complex. Under these
circumstances, for the longitudinal wave, for example, the wave impedance is
predominantly reactive (i.e., has only a small real component) when ReMk2

d
N*ReMk2

s
N,

and has a signi"cant resistive (real) component when ReMk2
d
N)ReMk2

s
N [13].

Similar reasoning may be applied to the shear wave. Junger and Feit [4] have given
low-frequency approximations to the wave impedances z

ds
and z

rs
, which are valid provided

that the radial wavenumbers are small enough such that Dkr
ds
a D@1 and Dkr

rs
a D@1. When the

impedance is purely reactive, it is mass-like although the mass itself is frequency dependent:
i.e.,
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, (22)
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has a similar form. When the impedance has resistive and reactive components it
becomes
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m
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where m
ds

is de"ned as above. Again, z
rs

is of a similar form.
Figure 2 shows the form of the radiation impedance for di!erent ratios of axial

wavenumber to wavenumber, k in the external medium (k"k
d

or k"k
m
, depending on

which wave is being considered). The above low-frequency approximations are also shown.
Figures 2(a) and 2(b) show the real and imaginary components of the radiation impedance
for various values of k

s
/k(1 (i.e., when the axial wavespeed in the pipe is greater than the

wavespeed in the surrounding medium, and the wave is radiating into the surrounding
medium). When k

s
/k"0, the axial wavespeed is in"nite, and the pipe behaves as a pulsating

cylinder, with the waves radiating out radially, and the real part of the impedance tending to
unity at high frequencies as expected. For increasing values of the ratio k

s
/k, the

propagating wave in the surrounding medium becomes more and more aligned with the
pipe axis, and both the real and imaginary components of the radiation impedance increase.
For the limiting case of k

s
"k, the wave is propagating parallel to the pipe axis; the

low-frequency approximation for the radiation resistance becomes exact at all frequencies,



Figure 2. Normalized radiation impedance as a function of non-dimensional free"eld wavenumber, k, in the
surrounding medium, for di!erent values of k
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and the radiation reactance becomes in"nite. Figure 2(c) shows the imaginary components
of the radiation impedance for values of k

s
/k'1 (i.e., when the axial wavespeed in the pipe

is less than the wavepseed in the surrounding medium, and the wave does not radiate into
the surrounding medium). Under these circumstances, the real part of the radiation
impedance is zero. With increasing k

s
/k, the radiation reactance decreases from in"nity, but

stays positive, showing that the e!ect of the surrounding medium is always to mass load the
pipe. These e!ects have been discussed more fully by Junger [9].
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3. SOLUTION FOR THE s"1 WAVE

Equation (20) allows the s wavenumbers to be determined.
The s"1 wavenumber (the predominantly #uid-borne wave) is found by assuming that

k
1

is much larger than the plate compressional wavenumber k
L
: i.e., the wavespeed of the

s"1 wave is much slower than the plate compressional wavespeed. Setting k2
1
Ak2

L
gives
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which, on rearranging, and adopting the form of the low-frequency approximations for the
impedances of the surrounding medium (equation (23)) becomes
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where z
d1
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.

Expressing k
1

in this form allows the individual terms to be readily identi"ed as sti!ness
components of the contained #uid (2B

f
/a) and the pipe wall (Eh/a2), a pipe wall mass

component (ohu2), and the radiation mass and resistance of the surrounding medium (M
rad

and R
rad

). It should be noted that the impedance terms M
rad

and R
rad

are dependent on k
1
,

which must therefore strictly be found recursively. However, a number of observations may
now be made.

(1) If the density of the surrounding medium is su$ciently low, the radiation impedance
M

rad
and R

rad
will be small compared with the mass term ohu2, and may be ignored. This is

then equivalent to the case when no surrounding medium is present. Under these
circumstances, k

1
becomes

k2
1
"k2

f A1#
(2B

f
/a)

(Eh/a2)!ohu2B . (26)

This is in agreement with earlier work by Pinnington and Briscoe [5] and Munjal and
Thawani [7], when considering the case of no surrounding medium. The #uid wave in the
pipe is always slower than the #uid wave in an in"nite medium, the wavespeed decreasing
with increasing frequency. As the frequency approaches the pipe ring frequency, the
denominator of equation (26) tends to zero, so the wavenumber k

1
approaches in"nity, and

the wavespeed correspondingly approaches zero.
(2) At low frequencies (well below the pipe ring frequency), the pipe wall inertia and

radiation mass terms will be small compared with the pipe wall sti!ness term, Eh/a2, and
equation (25) reduces to the Korteweg equation [14] with an additional loss term R

rad
,

where k
1

depends primarily on the magnitude of the sti!ness of the contained #uid
compared with that of the pipe wall:
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1
"k2
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f
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B . (27)

(3) Equation (25) may be reformulated in terms of the impedance of the contained #uid,
z
fluid

, the impedance of the pipe wall, z
pipe

, and the radiation impedance, z
rad1

, namely
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where z
fluid

"!2iB
f
/au, z

pipe
"i (ohu!Eh/a2u), and z

rad1
"z

d1
#z

r1
. The magnitudes

of the individual terms and their variation with frequency are considered in more detail in
section 5, where example results are discussed.

(4) Returning to equation (25), whilst the e!ect of the pipe wall on the s"1 wave in the
#uid is to increase the wavenumber k

1
from its free"eld value k

f
, the e!ect of the

surrounding medium is to increase it yet further. In addition, if the radiation resistance
term is non-zero, this introduces an imaginary component into k

1
, indicating that

the wave decays as it propagates, radiating into the surrounding medium. Furthermore,
if the shell material itself is lossy, loss within the pipe wall may be represented by a
complex elastic modulus, E(1#ig), where g is the material loss factor; equation (25) then
becomes
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rad

)#i (uR
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#gEh/a2)B . (29)

The equation clearly shows that, at low frequencies, losses within the pipe wall will
dominate the loss; at higher frequencies, if the radiation resistance term is non-zero, the loss
due to radiation will dominate.

The above e!ects are discussed further in section 5 where example results are shown.

4. SOLUTION FOR THE s"2 WAVE

The s"2 wavenumber (corresponding to the shell wave) is found with the knowledge
that it is always smaller than the #uid wavenumber k

f
, and the wavenumbers in the

surrounding medium, k
d
and k

r
. Setting k2

2
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which, on rearranging, becomes
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As for the s"1 wave, the individual terms can be readily identi"ed as sti!ness components
of the contained #uid (2B

f
/a) and the pipe wall (Eh/a2), a pipe wall mass component (ohu2),

and the impedances of the waves in the surrounding medium (z
d2

and z
r2

). Furthermore, the
expression for k

2
is explicit as the radiation impedances depend only on the wavenumbers of

the waves in the surrounding medium, namely
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. (32)

The implication here is that k
2

is su$ciently small such that the waves in the external
medium are assumed to be propagating normal to the pipe wall at all frequencies. In this
way, the angular dependence of the impedance functions is removed, and the radiation
impedance approaches that of a pulsating cylinder (see section 2.1 and Figure 2).
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Upon adopting the form of the low-frequency approximations for the impedances
(equation (23)), equation (31) becomes

k2
2
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where z
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.

Again a number of observations may be made.
(1) As for the s"1 wave, if the density of the surrounding medium is su$ciently low, the
radiation mass term will be small compared with the pipe wall inertia term and can be
ignored. In addition, the radiation resistance term can be considered negligible. This is then
equivalent to the case of no surrounding medium, and the expression for k

2
becomes
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f
/a)!ohu2B . (34)

Upon assuming that the #uid and shell material are not lossy, the wave does not decay, and
k
2

is purely real. The shell wall experiences the contained #uid as a sti!ness, and its e!ect is
to reduce the wavenumber k

2
from the empty pipe case. This is in agreement with work

previously undertaken by Pinnington and Briscoe [5].
(2) At low frequencies (again well below the pipe ring frequency), the mass terms will be

small compared to the sti!ness terms and equation (33) becomes
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The predominant e!ect of the external medium here is to introduce an imaginary
component to k

2
: i.e., the wave decays as it propagates along the shell, but its speed is largely

una!ected.
(3) Equation (33) may be reformulated in terms of the impedance of the contained #uid,

z
fluid

, the impedance of the pipe wall, z
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, the impedance of the pipe wall sti!ness, z
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,
and the radiation impedance, z
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where z
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The magnitudes of the individual terms and their variation with frequency are considered
in more detail in section 5, where example results are discussed.

(4) Returning to equation (33), if a surrounding medium is present, the radiation
impedance terms contribute. The radiation mass and resistance terms are always both
non-zero, thus k

2
is complex and the shell wave decays as it propagates along the pipe,

radiating into the surrounding medium. The e!ect of the radiation mass is to increase the
wavenumber k

2
, thus reversing the e!ect of the contained #uid on the shell wave. If the shell

wall material is lossy, equation (33) becomes
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2
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f
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As for the s"1 wave, at low frequencies, the pipe wall loss dominates; at higher frequencies,
radiation losses will dominate.



TABLE 1

Pipe properties

Thickness/radius ratio 0)125
Young's modulus (N/m2) 5)0]109
Density (kg/m3) 2000
Poisson's ratio 0)4
Material loss factor 0)065
Plate compressional wavespeed (m/s) 1725

TABLE 2

Media properties

Surrounding medium Contained #uid

Bulk modulus (N/m2) 4)5]109 2)25]109
Shear modulus (N/m2) 1)8]108 *

Density (kg/m3) 2000 1000
Longitudinal wavespeed (m/s) 1500 1500
Shear wavespeed (m/s) 300 *
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The above e!ects are discussed further in the following section where example results are
shown.

5. EXAMPLE RESULTS

Example results are presented here for a typical water-"lled PVC pipe surrounded by an
in"nite elastic medium which can sustain both longitudinal and shear waves. Results for the
same water-"lled pipe in vacuo are also shown for comparison. Complex wavenumbers for
both the s"1 and 2 waves are plotted as a function of frequency. Loss within the pipe wall
is included, and is achieved by means of a complex modulus of elasticity, as discussed in the
previous section. The various pipe and media properties are shown in Tables 1 and 2.
Dispersion plots, derived by using equations (25) and (31) are shown in Figures 3, 4, 6 and 7.
All the results are non-dimensionalized by the pipe radius, a, and plotted against the
non-dimensional free"eld #uid wavenumber k

f
a. In addition, Figures 5 and 8 show the real

and imaginary parts of the component impedances for each of the s waves.
Figure 3 shows the real part of the wavenumber for the s"1 wave. Firstly, the "gure

shows that k
1

is much larger than the plate compressional wavenumber, k
L
, consistent with

the initial assumption about the s"1 wave. The "gure shows that, without the surrounding
medium, the e!ect of the pipe wall compliance is to increase the real part of the wavenumber
k
1

for the s"1 wave from the free"eld value, k
f
: i.e., the wavespeed is reduced, as expected.

The e!ect of the surrounding medium is to increase the wavenumber yet further, again as
expected, given that the e!ect of the surrounding #uid is one of mass loading. This e!ect,
however, is small compared with the e!ect of the shell wall, and certainly, at low frequencies,
k
1

may be approximated by the in vacuo value, as expected. In this instance, k
1

is greater



Figure 3. Real part of wavenumber for s"1 wave:*e*, #uid-"lled in vacuo pipe;*h*, #uid-"lled buried pipe;
*n*, longitudinal wave, *n*, #uid wave; *s*, shear wave; *]*, plate wave.

Figure 4. Loss in dB/unit distance for s"1 wave: , material loss;*j*, total loss;*s*, shear wave loss.
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than k
d
and less than k

r
(the wavespeed of the k

1
wave is greater than that of the shear wave

in the surrounding medium, and less than that of the longitudinal wave), indicating that the
shear wave radiates, whereas the longitudinal wave does not.

Figure 4 shows the loss in dB/unit propagation distance (measured in the number of pipe
radii) for the s"1 wave. This loss is related to the imaginary part of the wavenumber by

¸oss (dB/unit distance)"20 ImMkaN/ln(10).

The approximate loss attributable to each mechanism is also shown. As the longitudinal
wave does not radiate into the surrounding medium, no radiation losses are attributable to
it; only the shear wave contributes to the radiation loss. It can be seen that the loss due to
each mechanism increases with frequency. At low frequencies (approximately k

f
a(0)1 on

the graph), losses within the pipe wall dominate, whilst, at higher frequencies (k
f
a'0)1 on

the graph), the radiation resistance has increased su$ciently for the radiation loss to
dominate.

Figure 5 shows the real and imaginary components of the #uid, pipe and radiation
impedances for the s"1 wave. Figure 5(a) shows that the radiation resistance increases
with frequency as expected from equation (23). The real part of the pipe impedance
decreases with frequency as expected*one of the consequences of adopting a frequency-
independent loss factor. From Figure 5(b), it can be seen that the #uid and pipe impedances
are sti!ness-like (the frequencies considered are well below the pipe ring frequency), and the



Figure 5. Component impedances for s"1 wave: (a) real part: *r*, pipe; *j*, radiation; (b) imaginary
part: - -r- -, #uid; - -j- -, pipe; , radiation (dotted lines indicate negative values).

Figure 6. Real part of wavenumber for s"2 wave:**, #uid-"lled in vacuo pipe;**, #uid-"lled buried pipe;
-----, longitudinal wave; }}}}}, #uid wave; *s*, shear wave; **, plate wave.
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radiation impedance is mass-like, as expected. The ratio between the #uid impedance and
pipe impedance is large, which, from examination of equation (28), is re#ected in the
observation that the presence of the pipe wall has a large e!ect on the s"1 wavenumber.
The magnitude of the radiation impedance is small compared with the pipe impedance,
again re#ected in the observation that the surrounding medium has a small e!ect on the
s"1 wave compared with the pipe wall itself. A close examination of equation (28) suggests
that at any given frequency, the imaginary part of the s"1 wavenumber will be controlled
by whichever is the larger of the real parts of the pipe and radiation impedances. The results
con"rm this: Figures 4 and 5(a) show that when the real part of the pipe impedance is larger,



Figure 7. Loss in dB/unit distance for s"2 wave: (a) all losses: , material loss;*j*, total loss;*d*,
total radiation loss; (b) radiation loss: *s*, shear wave loss; *n*, longitudinal wave loss; *d*, total
radiation loss.
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the material loss dominates, and when the real part of the radiation impedance is larger, the
radiation loss dominates.

Figure 6 depicts the real part of the s"2 wavenumber, for both the #uid-"lled pipe in
vacuo, and with the surrounding medium. The graph shows that the wavenumber
k
2
approximates to the plate compressional wavenumber k

L
, and is not signi"cantly a!ected

by the presence of the surrounding medium. This is as expected given that the sti!ness of the
contained #uid is large compared with the pipe wall sti!ness. The wavenumber k

2
is smaller

than the wavenumbers for both the longitudinal and shear waves in the surrounding
medium, so both the wave types will radiate. However, the wavenumber k

2
is not

substantially smaller than the #uid wavenumber k
f
, or the longitudinal wavenumber, k

d
, as

initially assumed, because the plate compressional wavenumber is comparable to the #uid
and longitudinal wavenumbers. The e!ect of this is that the radial wavenumbers will be
slightly smaller than predicted, and the radiation impedance will no longer be that of
a pulsating cylinder. Examination of Figures 2(a) and 2(b) shows that, at low frequencies,
the radiation resistance will be largely una!ected, but the radiation mass loading will be
slightly larger than predicted. At higher frequencies, both the radiation resistance and the
mass loading will be larger than predicted. The e!ect of this will be to reduce the wavespeed
of the s"2 wave somewhat, such that the wavenumber is likely to be slightly higher than
that shown in the "gure.

Figures 7(a) and 7(b) show the loss in dB/unit propagation distance (measured in number
of pipe radii) for the s"2 wave. The losses attributable to each mechanism separately
are also shown. As for the s"1 wave, losses increase with frequency for all the loss



Figure 8. Component impedances for s"2 wave: (a) real part: *r*, pipe; *j*, radiation; (b) imaginary
part: --r--, #uid; --j}}, pipe; *]*, radiation (dotted lines indicate negative values).
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mechanisms. For all the frequencies shown, material losses dominate, showing that
most of the energy loss for the s"2 wave occurs in the pipe wall. Losses to the longitudinal
wave are of a similar magnitude to those for the shear wave. This again is as expected,
given that, at low frequencies, the radiation resistance for each wave (equation (23) is
the same).

Figure 8 shows the real and imaginary components of the #uid, pipe and radiation
impedances for the s"2 wave. As for Figure 5(a), Figure 8(a) shows that the radiation
resistance increases with frequency as expected whilst the real part of the pipe impedance
decreases with frequency. From Figure 8(b), as expected, it can be seen that the #uid and
pipe impedances are sti!ness-like (the inertial term in the pipe impedance is small at the
frequencies considered), and the radiation impedance is mass-like. Unlike for the s"1
wave, there is no simple relationship between the relative sizes of the real parts of the pipe
and radiation impedances and the controlling loss mechanism. However, an examination of
equation (36), and its comparison with equation (28) (the magnitude of the radiation
impedance is small compared with the pipe impedance, and even smaller compared with the
#uid impedance) suggests that the e!ect of the surrounding medium is likely to be small.
The wavenumber plots con"rm this.

6. CONCLUSIONS

In this paper, axisymmetric waves in a #uid-"lled, plastic pipe, surrounded by an in"nite
elastic medium which can sustain both longitudinal and shear waves have been studied.
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Complex wavenumbers have been derived for two wave types: the s"1 wave which is
predominantly a #uid-borne wave; and the s"2 wave which predominantly exists in the
pipe wall. The real part of the wavenumbers provides information about the wavespeed of
the wave, whilst the imaginary part relates to the propagation loss.

It was found that, for the &&#uid-borne'' s"1 wave, the presence of the pipe wall reduces
the wavespeed from the free"eld value. The presence of the surrounding medium is to
reduce it yet further, as it mass loads the pipe, but the e!ect is small compared with the e!ect
of the pipe wall. The wave may or may not radiate into the external medium depending on
its wavespeed relative to those in the surrounding medium. However, even if the wave does
radiate, at low frequencies, losses within the shell wall will dominate.

For this s"2 &&shell'' wave, the e!ect of both the contained #uid and the surrounding
medium on the wavespeed is small. However, whereas the contained #uid is experienced as
a sti!ness by the pipe wall, thus slightly increasing the wavespeed, the surrounding medium
is experienced as a mass, resulting in a slight reduction in wavespeed. The wave always
radiates into the surrounding medium, but at all the frequencies considered, the radiation
losses are small compared with the losses within the pipe wall.
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APPENDIX A: NOMENCLATURE

x, h, r axial, circumferential and radial directions
u, v, w shell displacements in the axial, circumferential and radial directions
p
x
, ph axial and circumferential normal stress

a, h pipe radius, wall thickness
p
f
, p

m
pressures in the contained and surrounding media

o, E, l density, elastic modulus, Poisson ratio of shell material
;

s
, =

s
amplitudes of axial and radial displacements of the s wave

P
fs

, P
ds
, P

rs
pressure amplitudes of the s wave in the contained and surrounding media

k wavenumber
k
s

axial wavenumber of the s wave
k
f

free"eld internal #uid wavenumber
k
d
, k

r
free"eld wavenumber of longitudinal and shear waves in the surrounding medium

k
L

axial wavenumber of a compressional wave in a plate of the shell thickness
kr
fs

, kr
ds
, kr

rs
radial wavenumber for the s wave in the contained and surrounding media

B
f
, B

m
bulk moduli of the contained and surrounding media

o, G
m

density, shear modulus of the surrounding medium
z
ds
, z

rs
radiation impedances of the s wave in the surrounding medium

c
d
, c

r
wavespeeds of longitudinal and shear waves in the surrounding medium

M
rad

, R
rad

radiation mass, resistance
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